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ABSTRACT

Compressed sensing is a signal processing technique used for signal reconstruction with significantly smaller
number of samples than the requirements of the Nyquist-Shannon theorem. In this work, we simulate a lenseless
digital holographic system. We investigate the ringing-like artefact introduced by truncation by the camera
aperture. We present the results of using the orthogonal matching pursuit based compressed sensing algorithms
to combat this ringing-like artefact. We demonstrate that compressed sensing achieves remarkable reconstructions
and suppresses ringing well, but only up to a point in terms of the size of the aperture. This research could help
the advancement of compressive digital holography.
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1. INTRODUCTION

Compressed sensing (CS) is a signal processing technique that has the ability to reconstruct a signal with fewer
samples than the requirement of the Shannon-Nyquist theorem. It was first proposed by Emmanuel Candès,
Justin Romberg, Terence Tao, and David Donoho.1–3 Before the invention of CS methods, image compression
algorithms allowed most of the acquired data to be eventually discarded with close to no perceptual loss. This
phenomenon leads the creators of CS to ask the question of whether it is possible to not measure the eventually
discarded information in the first place.1 CS achieve this by using optimization methods to exploit the sparsity
of a signal. There are two main conditions that have to be met for CS to recover the signal.4 The first is that we
need to be able to assume that the signal has a sparse representation in some domain. We can use a sparsifying
operator to transform the signal to that domain. The second is that the object need to be projected to another
signal space. The projection transform needs to have low similarity with the sparsifying operator.

Several categories of algorithms can be used to perform the CS reconstruction.5 The convex optimization
methods use linear programming solvers such as basis pursuit to obtain the sparse representation of a signal.6

Greedy approaches such as Orthogonal Matching Pursuit (OMP) use iterations to find the most correlated
columns in the mixing matrix to the measurements.7 The iterative hard/soft thresholding algorithm use a
thresholding operation to simultaneously operate on k columns in the mixing matrix.8,9 Recently, machine
learning methods have also been proposed for finding the CS reconstruction.10,11

CS has been adopted by a various areas of study. One area where CS could be applied is digital holography
(DH).4 After Brady et al.12 successfully introduced CS in digital holography, CS was applied under various
digital holographic systems. A holographic setup has the ability to capture a 3D digital hologram of an object.
Reconstruction algorithms then reconstruct a 3D image using the recorded phase and amplitude information of
the object. One type of digital holography is Fresnel digital holography. This type of setup uses the Fresnel
transform. The Fresnel transform is a special case of the linear canonical transform13 and is a model for free
space propagation. Compressive sensing was first also applied to digital Fresnel holography by Rivenson et al.14
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Because we would like to test the CS algorithm on a Fresnel digital holography system, the sensing matrix in
our CS algorithm is a Fresnel transform matrix. The combination of the Fresnel transform and the Haar wavelet
transform have low coherence,4 which is why we used the Haar wavelet transform to sparsify the obejct.

When a discontinuous signal is approximated by its Fourier transform, ringing artefacts occur at the locations
of discontinuities. This ringing artefact is known as Gibbs ringing. We have previously investigated the effect of
Gibbs ringing and its suppression.15,16 Commonly used methods for Gibbs suppression include low-pass filtering,
subvoxel shift,17 Gegenbauer reconstruction18 and machine learning methods.19,20 In this work, we investigate
how CS could be used to suppress a ringing-like artefact in Fresnel transform, shown in.21

The structure of this paper is as follows. We summarize the theory behind orthogonal matching pursuit
(OMP) in Sec. 2. The analysis of compressed sensing and Gibbs ringing is shown in Sec. 3. Finally, we present
our conclusions in Sec. 4.

2. THEORY

We can summarize the compressive sensing technique into Eq. 1.

y = ϕf∗ = ϕψx = Ax (1)

where y is the vectorized truncated Fresnel data, ϕ is the Fresnel sensing matrix, ψ is the sparsifying matrix,
f∗ is the vectorized original test hologram, A is the mixing matrix and x is what we try to find using the
OMP algorithm. Assuming that the signal we wish to reconstruct is sparse in the wavelet domain, then only a
few linear projections of the signal could be used to reconstruct the hologram. A more detailed explanation of
compressed sensing theory could be found in.5,22

In a minimum L1 norm solution using linear programming(LP), we seek:

x̂ ≜ argmin
x

(||x||1, subject to: y = Ax) (2)

The algorithm that we used to solve the optimization problem was orthogonal matching pursuit (OMP). It is
an iterative greedy method that could be used to find the sparsest representation. It was first proposed by Pati
et al. in 1993.7 As shown in Eq. 2, the core problem in CS is to solve for x in y = Ax with prior knowledge of y
and A. To solve this, OMP assumes x to be sparse and treat y as a sparse linear combination of columns of A.

At the beginning of OMP, two initialization steps are required. We need to set A0, the index set, to be
zeros the same size as A, and residual r = y. After the initialization is done, the OMP algorithm will iterate k
times. In each iteration of OMP, the index set A0 is first updated by selecting a column in A that are the most
correlated to the residual r. Then, that column in A is extracted and the same column will not be extracted
again in later iterations. We then calculate x using x = A†y where A† is the Moore–Penrose psudoinverse of
A0. Finally, the residual r is updated by r = y − Âx where Â is the mixing matrix A without all the selected
columns. After the residual r is updated, another iteration will begin.

3. COMPRESSED SENSING AND GIBBS RINGING

In this section, we use a rectangular test hologram to demonstrate the usage of compressive sensing in Fresnel
digital holography and their ability to suppress ringing. We present simulations of Fresnel digital holographic
reconstructions using the setup depicted in.21 In this simulated system, we use the Fresnel transform as our
sensing matrix ϕ. In the Fresnel transform matrix, the wavelength of the light beam is λ = 632.8 nm to simulate
a red helium-neon laser light in air. The propagation distance is 0.3 m and the sampling distance between pixels
is T = 10 micron. The resulting hologram has 32 × 32 pixels. A Haar wavelet transform was used as the
sparsifying matrix, ψ−1.

In Fig. 1, we show that CS has the ability to recover information using limited Fresnel data simulating the
apodization process. In this figure, the top row shows the absolute value of three holograms, showing their
amplitude. The row in the middle row shows the top row’s corresponding spectrum. Within these two rows, (a)



Figure 1. In this figure, (a) shows the amplitude of the original test hologram. (b) is the spectrum of (a). (c) is the
reconstructed hologram using the truncated and zeropadded spectrum shown in (d). (e) is the OMP-based compressive
reconstruction using (d) as input, and (f) is its spectrum’s absolute value. (g) shows a slice through the middle of (a),(c)
and (e) with purple dotted line indicating the position of the truncation.

and (b) shows the test hologram and its spectrum. (d) shows the spectrum after apodization that removes the
outermost 4 pixels on all sides and zeropadding that fills 0s in these positions. We refer to this measurement of 4
pixels as the truncation. (c) is the Fresnel reconstruction of (d). (e) is the CS reconstructed image and we plotted
its spectrum in (f) for reference. The bottom plot (g) shows a slice through the middle of the three holograms in
the top row, showing the test hologram (blue) ringing-like artefact in the Fresnel reconstruction (yellow) and the
results of CS reconstruction (red dashed). The positions of apodization are shown in purple dotted line in (g).
Unlike Gibbs ringing in Fourier reconstruction that only appears around discontinuities, it is worth pointing out
that the ringing-like artefact in Fresnel transform also appears at the locations of apodization(purple dotted). It
can be seen that the CS reconstruction completely eliminates the ringing in this example, which demonstrates
that CS has the ability to restore the hologram with limited Fresnel domain data.

Even though CS has been shown to have the ability to combat the aftermath of apodization in Fig 1, the
superiority of CS is limited to how much truncation that was introduced in the Fresnel domain. In Fig. 2,
we plot the structural similarity index measure (SSIM) of both CS and Fresnel reconstruction as a function of
truncation to test this limit of our CS algorithm. It can be seen that CS reaches its limit after truncation gets
larger. It is only capable of perfect reconstruction up to a point, after which it starts to degrade.

In Fig. 2, the SSIM between the CS reconstruction and the test hologram drops below 1 when truncation
is greater than 8. In Fig. 3, we present a simulation where the CS reconstruction is just starting to fail with
truncation equals to 9.

4. CONCLUSIONS

We simulated a Fresnel digital holographic system in this work. The system has a limiting camera aperture that
introduces ringing in the hologram. We reconstructed the hologram using zero-padded Fresnel reconstruction and



Figure 2. In this figure, SSIM of the reconstruction for both Fresnel reconstruction and compressed reconstruction are
plotted as a function of truncation. It can be seen that the compressed reconstruction is perfect for truncation ≤ 8 and
that the compressed reconstruction always has higher SSIM scores than the Fresnel reconstruction.

Figure 3. The blue line is a slice through the original test hologram. The red line is the same slice through the CS
reconstruction and the yellow line is the same slice through the Fourier reconstruction. This shows a case in which the
CS algorithm is just starting to fail.

an OMP based CS reconstruction. We investigated the possibility of using CS to suppress ringing-like artefact
in Fresnel digital holography. We believe that this is the first exploration of using CS as a ringing suppression
method for Fresnel digital holography.

We have discovered that CS has the ability to suppress the ringing-like artefact in Fresnel digital holography,
but up to a limit in terms of truncation. When the limit of truncation is passed, CS reconstruction still has a
superior SSIM score, but degrades as much as Fresnel reconstruction does. We believe that using CS methods to
increase resolution first and then use other zoom algorithms and Gibbs suppression methods to further increase
the resolution would be the best approach in that situation.
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