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ABSTRACT

In this paper, we propose a high-resolution GAN model for image dehazing in icing meteorological environment,
which strictly follows a physics-driven scattering strategy. First of all, the utilization of sub-pixel convolution
realizes the model to remove image artifacts and generate high-resolution images. Secondly, we use Patch-GAN
in the discriminator to drive the generator to generate a haze-free image by capturing the details and local
information of the image. Furthermore, to restore the texture information of the hazy image and reduce color
distortion, the model is jointly trained by multiple loss functions. Experiments show the proposed method
achieves advanced performance for image dehazing in icing weather environment.
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1. INTRODUCTION

When an aircraft is flying at high altitude, contacting with water vapor in the air will cause icing on the surface
of the aircraft, and the icing of the aircraft will greatly affect flight safety. During the test of this scene in the
icing wind tunnel, there will be suspended water droplets with a certain liquid water content in the test section.
When the light passes through the water droplets in the test section, the generated image will be blurred due
to the attenuation of light scattering and absorption, resulting in a loss of image quality. These images usually
have distorted colors, decreased contrast, lost edge and texture information, and cannot accurately observe the
conditions of icy areas. Therefore, it is of practical significance to apply image dehazing to improve the quality
of monitoring images in icing wind tunnel test.

In common dehazing algorithm, an atmospheric scattering model1 is usually used to describe the relationship
between the hazy image and the haze-free image:

I = J(x)t(x) +A(1− t(x)). (1)

where, J(x) represents the haze-free image, I(x) represents the collected hazy image, t(x) represents the trans-
mittance map, and A represents the atmospheric illumination value. The essence of image dehazing is the process
of restoring the hazy image to the fogless image infinitely. After I(x) is given, in order to find J(x) for the reverse
solution, we usually focus on finding the value of both t(x) and A. Image dehazing is a highly ill-posed problem.

Many traditional algorithms for image dehazing focus on solving the transmittance and atmospheric illumina-
tion values in the atmospheric scattering model. Representative algorithms include dark channel prior dehazing
algorithm DCP2 and color attenuation prior dehazing algorithm CAP.3 In recent years, with the rise of deep
learning methods, algorithms for image dehazing have also achieved good results. Among them, there are also
many dehaze maps that combine neural networks with prior knowledge, that is, estimate transmittance and
atmospheric illumination values through network learning, and then obtain dehaze maps by inversely solving
atmospheric scattering models, such as DehazeNet,4 multi-scale depth dehaze network MSCNN,5 dense pyramid
dehazing algorithm DCPDN6 and At-DH,7 etc.

In icy weather conditions, the concentration of hazy is often relatively high. For this dense hazy situation,
we learned the related method At-DH in the NTIRE19 dehazing challenge. The dehazing data set DenseHaze8
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Figure 1. Network structure diagram.

in NTIRE19 is characterized by dense and uniform hazy, which are similar with the pictures obtained under
the environment. The algorithm At-DH has achieved good results in this challenge, and the dehazing effect is
obvious. Therefore, inspired by the algorithm At-DH, in this paper we propose a high-resolution GAN model
with dense connection for image dehazing in icing meteorological environment. According to the inverse problem
of image dehazing, we estimate the transmittance and atmospheric illumination value through network learning,
reverse the atmospheric scattering model to perform the dehazing work, and strictly follow the physics-driven
scattering model to achieve better dehazing effect. And the generation confrontation network GAN has great
potential in the research direction of real image restoration. We combine this strategy with image dehazing to
generate a haze-free image that is closer to the real one. The main contributions of this paper are as follows:

1. A high-resolution GAN model for image dehazing is proposed in this paper to obtain relatively dehazed
images in icing meteorological environment.

2. The proposed model can eliminate the artifacts caused by traditional de-convolution to a certain extent
and help to obtain high-resolution dehazed image.

2. RELATED WORK

Image dehazing algorithms are generally divided into prior knowledge-based and learning-based methods. The
dehazing algorithm based on prior knowledge can be divided into physical model algorithm and non-physical
model algorithm: the physical model dehazing algorithm is based on the atmospheric scattering model, and
the related parameters t(x) and A value are obtained through prior knowledge. The hazy-free image obtained
by Equation (1), such as algorithms DCP, CAP, etc.; the non-physical model defogging algorithm uses image
enhancement methods to dehaze, such as Retinex defogging algorithm,9 histogram equalization,10 wavelet and
homomorphic filtering algorithms. At the same time, the learning-based dehazing algorithm can also be similarly
divided into two parts, the estimated parameter method and the direct restoration method: the estimated
parameter method is to estimate t(x) and A through network learning to perform defogging, and the parameters
estimated by using deep learning are generally more accurate than the traditional ones, such as MSCNN,5

DehazeNet4 and DCPDN;6 the direct repair method is to directly learn and estimate the output dehaze image
from the input fog image through the network, such as FD-GAN,11 GridDehazeNet12 and FFA-Net.13

3. METHODOLOGY

In this section, we will introduce our network structure in detail. The network is based on the generation
confrontation network GAN, which consists of two parts: the generator and the discriminator. The atmospheric
scattering model inversely solves the fog-free image, and the discriminator distinguishes the hazy-free image and
its corresponding real hazy-free image. The whole framework is shown in Fig. 1.

3.1 Generator

The specific network structure diagram of the generator is shown in Fig. 2. The main function of the encoder on
the left is to extract important features of the picture, while the decoder on the right estimates scene information



Figure 2. Generator. Learning to estimate parameters t(x) and A through densely connected networks.

based on the features extracted from the encoder, and at the same time restores the original size of the picture.
The encoder is constructed based on the densely connected network DCN,14 mainly the densely connected module
(Dense Block) and the transmission module (Trans Block). The structure of the decoder is similar to that of
the encoder, including the bottleneck layer(Bottleneck Block),7 the transmission layer (Transition Block), the
residual layer (Residual Block) and the refinement layer (Refine Block).6

3.1.1 Encoder

In the network structure, the encoder’s BaseBlock to the third Trans Block use the pre-training parameters of
the first half of the DCN, because the structure in the network realizes the splicing of features on the channel,
thereby achieving the effect of feature reuse. Using pre-trained connected blocks in the dehazing work helps to
obtain important features.

3.1.2 Decoder

The main function of Transition Block is to enlarge and change the refinement features. The channel change
is completed by the 1×1 convolutional layer in the Tranition Block, and then the feature is enlarged through
upsampling. Compared with Dens Block in the encoder, Bottleneck Block adds batch normalization once to
normalize the training data, so that the network has better training stability and avoids gradient explosion.
Adding a residual layer between two consecutive dense blocks helps recover more details in the image by extracting
more high-frequency information.

Refine Block merges and retouches image information at different scales. The addition of the residual network
enables superimposing the identity mapping layer on the shallow network so that the network does not degrade
as the depth increases.

3.1.3 Sub-pixel convolution

Sub-pixel convolution15 is applied in the field of image super-resolution, which can super-resolve low resolution
data to high resolution space, and is an upsampling method of pixel rearrangement. The sub-pixel convolution
process is described as follows:

IHR = fL(ILR) = PS(WL × fL−1(ILR) + bL). (2)

IHR is a high-resolution image, ILR is a low-resolution image, f is a convolution operation, WL is the weight
of the convolution kernel, bL is the bias item, and PS is the pixel reorganization operation.

The pixel reorganization operation is to take an element from each channel of the multi-channel feature map
and combine it into a square unit on the new feature map. The pixels on the original feature map are equivalent
to the sub-pixels on the new feature map. In this paper, we replace the original up-sampling layer with the
sub-pixel convolution layer, so that there is no need to add meaningless 0 elements during the up sampling
process, and to a certain extent eliminate the artifacts caused by traditional inverse convolution, while helping
to reduce computational complexity.



Figure 3. Discriminator. It is beneficial to drive the generator to capture the local information of the image and generate
a relatively high-resolution haze-free image.

3.2 Discriminator

Here the discriminator introduces PatchGAN.16 Compared with the usual discriminator, it discriminates the
image by sub-area matrix, and finally takes the average result of all the matrices to output true and false. It can
pay more attention to the image details when training the model, and obtains higher resolution pictures. Since
Patch-GAN has fewer parameters and runs fast, it can be applied to pictures of any size. The discriminator
consists of a series of convolutional layers, batch normalization layers, and activation layers, where as shown in
Fig. 3.

3.3 Loss function

The loss function is used to standardize the learning direction of parameters in network training. In order to better
train the network and generate images with good dehazing effect, we use three common losses: reconstruction
loss, perception loss and confrontation loss.

3.3.1 Reconstruction loss

We use the reconstruction loss to compare the gap between the generated dehazed image and the real haze-free
image in image pixel space, which can be expressed as:

LRes =
1

N

N∑
i=1

||G(Ii)− Ji||1, (3)

where Ii represents the input foggy image, Ji represents the real fog-free image corresponding to the image, and
G (Ii) represents the dehazing generated by the generator picture.

3.3.2 Perceptual loss

We also use perceptual loss here to measure the perceptual similarity in the feature space of the dehazed image
and the haze-free image. The specific implementation is to evaluate the parameters of the VGG16 pre-trained
network model as follows:

Lp =
1

N

N∑
i=1

||ϕ(G(Ii))− ϕ(Ji)||22, (4)

where ϕ (.) represents the feature map obtained from the VGG16 network layer.

3.3.3 Adversarial loss

In the generated confrontation network, in order to restore the authenticity of the image, the confrontation loss
is the most commonly used type of loss as follows, and the binary cross-entropy function is used to calculate the
loss value.

LA =
1

N

N∑
i=1

log (1−D (Ji, G (Ii))) , (5)



3.3.4 Overall loss function

Finally, the overall loss function consists of the reconstruction loss function, perceptual loss function, and adver-
sarial loss function. Its definition is as follows:

Lall = LRes + α1Lp + α2LA. (6)

where α1 and α2 are the function weight.

4. EXPERIMENT

4.1 Settings

The hazy images involved in this paper are images taken from multiple angles in the icing wind tunnel experi-
mental scene supported by the Key Laboratory of Icing and Anti/De-icing of CARDC. Some pictures are shown
in Fig. 4. In order to simulate the state of the aircraft passing through the cloud layer containing super-cooled
water droplets, cloud field with a certain water droplet diameter MVD (median volume diameter) and water
content LWC (liquid water content) can be selected by adjusting the water pressure and air pressure of the nozzle
during the icing wind tunnel test. Both MVD and LWC are important parameters for determining the haze of
cloud field. The data sets we use here include foggy images with MVD of 25 µm and LWC of 1.31 g/m3, MVD
of 22 µm and LWC of 1.19 g/m3, and MVD of 20 µm and LWC of 1.0 g/m3 and 0.5 g/m3 respectively.

Figure 4. Some sample images from the icing wind tunnel.

In this paper, we selected 310 cropped foggy images in the icy wind tunnel as the training set and trained
them on the GPU. During the training, the input image size will be resized to 1024×1024. The Adam optimizer
is used for the generator and the discriminator, and the learning rate of both is set to 10−4, and a total of 100
epochs are iterated. The experiment runs in the environment of P6000 GPU, 24GB memory to train the model.

Figure 5. Comparison of visible edges before and after dehazing, e=0.88, r=2.91 after dehazing. (a) Original haze image;
(b) Dehazed image; (c) Visible edge of original hazy image (d) Visible edge of image after dehazing.



4.2 Evaluation metrics

Since there is no corresponding real fog-free image, in our experiment, the widely used visible edge gradient
method17 was used to evaluate the experimental results. There are two important indicators: the ratio of the
number of visible edges e and the average value of the regularized visible edge gradient r. As the example shown
in Fig. 5, after defogging, the overall contrast of the image is enhanced, and the number of visible edges measured
increases.

The relevant expressions are as follows

e =
nr − n0

n0
, (7)

n0 and nr represent the number of visible edges before and after image defogging, respectively, and e represents
the ability of the algorithm to restore invisible edges in the image. The larger the value, the better the defogging
effect.

r = exp(
1

nr

∑
Pi∈Yr

log ri) (8)

Yr is the set of pixels on the visible edge of the image after dehazing, ri is the ratio of the gradient of the dehazing
image and the foggy image at pixel point Pi. The larger the value of r, the higher the contrast of the image after
defogging, and the better the effect.

4.3 Comparative experiments

To evaluate our proposed model more accurately, a comparison with state-of-the-art dehazing methods is per-
formed on icing wind tunnel haze images. Advanced methods include traditional dehazing methods: DCP,2

CAP,3 AMEDF,18 LBF;19 deep learning methods: AOD-NET,20 MSCNN,5 FFA-Net,13 D4.21

Table 1 and Fig. 6 respectively shows the comparison results and visual effects of our model and traditional
dehazing methods in the wind tunnel dataset. From Fig. 6, we can intuitively see that DCP, CAP, and LBF
have a certain defogging effect and increase the number of visible edges, but the results are distorted and the
overall color is dark. AMEF has a better defogging effect, especially in the case of haze with an LWC of 0.5.
Overall, compared with these traditional methods, our model dehazes more thoroughly and has better visual
effects. From Table 1, in the case of dense fog with LWC of 1.31 and 1.0, r can achieve the best result.

Table 1. Comparison of the results of traditional methods on the test set.

Metric Image DCP2 CAP3 AMEDF18 LBF19 Ours

e

Image 1 1.67 3.51 1.59 1.81 0.88

Image 2 6.73 14.64 4.54 11.80 1.45

Image 3 1.33 3.36 1.41 2.52 0.82

Image 4 1.21 2.35 1.18 1.80 0.72

Image 5 2.60 3.12 2.41 4.41 0.44

Image 6 3.74 4.98 2.48 4.41 0.63

Average 2.88 5.33 2.27 4.46 0.82

r

Image 1 1.22 1.21 2.35 1.19 2.91

Image 2 1.16 1.46 2.48 1.84 3.38

Image 3 1.04 1.17 2.50 1.24 2.56

Image 4 1.13 1.11 2.49 1.17 2.60

Image 5 1.34 1.50 2.06 1.94 2.02

Image 6 1.24 1.24 2.23 1.47 1.83

Average 1.19 1.28 2.35 1.48 2.55



Figure 6. Comparison of six real hazy images in an icing wind tunnel with existing traditional methods. (1) and (2):
LWC=1.31; (3) and (4): LWC=1.0; (5) and (6): LWC=0.5.

Table 2 shows the comparison results between our model and the deep learning defogging method in the wind
tunnel dataset. For the deep learning method, we use the provided pre-trained model for the defogging test.
The visual effect comparison after defogging is shown in Fig. 7. From the results, it can be seen that the color
of AOD-NET is distorted, the effect of MSCNN on defogging is not obvious, the effect of D4 on the close-range
of the picture is better, and FFA-Net causes picture distortion. However, our model also restores the foreground
part of the picture to a certain extent. After dehazing, the picture is clearer and retains the original outline.

Table 2. Comparison of results of deep learning methods on the test set.

Metric Image AOD-NET20 MSCNN5 FFA-Net13 D421 Ours

e

Image 1 2.38 0.46 1.30 1.77 0.88

Image 2 5.41 0.76 1.40 5.47 1.45

Image 3 1.75 0.30 0.86 1.56 0.82

Image 4 1.39 0.26 0.63 1.23 0.72

Image 5 2.00 1.16 1.40 1.09 0.44

Image 6 2.94 0.68 0.72 1.73 0.63

Average 2.65 0.60 1.05 2.14 0.82

r

Image 1 1.70 1.22 1.34 1.49 2.91

Image 2 2.18 1.29 1.45 1.60 3.38

Image 3 1.73 1.20 1.43 1.53 2.56

Image 4 1.69 1.19 1.35 1.52 2.60

Image 5 1.74 1.37 1.48 1.44 2.02

Image 6 1.53 1.15 1.26 1.36 1.83

Average 1.76 1.24 1.22 1.49 2.55



Figure 7. Comparison of six real hazy images in an icing wind tunnel with existing deep learning methods. (1) and (2):
LWC=1.31; (3) and (4): LWC=1.0; (5) and (6): LWC=0.5.

5. CONCLUSION

In this paper, we proposed a high-resolution densely connected GAN model for image dehazing in icy meteoro-
logical environments. Based on the framework of generative confrontation network, we add sub-pixel convolution
for the generator to eliminate the artifacts in the hazy image and obtain high resolution dehazing image. Further-
more the Patch-GAN discriminator can discriminate the image locally to obtain a more accurate haze-free map.
Experimental results on icing wind tunnel data demonstrate that our method outperforms the state-of-the-art
techniques.
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